KVANT TEXNOLOGIYALARIDA TASODIFIY SONLAR GENERATORLARINING KRIPTOGRAFIK AHAMIYATI

KVANT TEXNOLOGIYALARIDA TASODIFIY SONLAR GENERATORLARINING KRIPTOGRAFIK AHAMIYATI

Authors

  • Safoyev Nuriddin Najmiddin o‘g’li Muhammad al-Xorazmiy nomidagi TATU, Kiberxavfsizlik va kriminalistika kafedrasi

Keywords:

fizik tasodifiylik, kriptografik xavfsizlik, Free-Running Oscillator (FRO), deterministik tizimlar, kvant tizimlari, RNG integratsiyasi, apparat xavfsizligi.

Abstract

Tasodifiy sonlar kriptografiya, modellashtirish, xavf tahlili va boshqa ko‘plab texnologik jarayonlarning asosiy komponentidir. Kompyuterlarning deterministik tabiatiga ko‘ra, haqiqiy tasodifiylikni faqat fizik jarayonlarga asoslangan True Random Number Generator (TRNG)lar orqali olish mumkin. Amaliyotda keng qo‘llaniladigan Free-Running Oscillator (FRO) yondashuvi elektron shovqindan foydalanadi, biroq uning to‘liq tasodifiyligi ilmiy jihatdan isbotlanmagan. Ushbu maqolada TRNG va FRO generatorlarining ishlash prinsiplari, ustun jihatlari va cheklovlari taqqoslanadi. Shuningdek, TRNGlardan kriptografik xavfsizlikda foydalanishning dolzarbligi hamda ularning keng miqyosda joriy etilishiga halaqit qilayotgan ilmiy va texnik masalalar tahlil qilinadi.

References

Carlet, C. (2010). Boolean Functions for Cryptography and Error Correcting Codes. In Y. Crama & P. L. Hammer (Eds.), Boolean Models and Methods in Mathematics, Computer Science, and Engineering (pp. 257–397). Cambridge University Press.

Maitra, S., & Pasalic, E. (2004). Further Constructions of Resilient Boolean Functions with Very High Nonlinearity. IEEE Transactions on Information Theory, 50(2), 379–386. https://doi.org/10.1109/TIT.2003.821971

Youssef, A. M., & Tavares, S. E. (1993). Resistance of balanced S-boxes to linear and differential cryptanalysis. Information Processing Letters, 56(5), 249–252. https://doi.org/10.1016/0020-0190(95)00119-N

Tokareva, N. (2015). Bent Functions: Results and Applications to Cryptography. Academic Press. https://doi.org/10.1016/C2014-0-04255-1

Cusick, T. W., & Stănică, P. (2009). Cryptographic Boolean Functions and Applications. Academic Press. https://doi.org/10.1016/B978-0-12-374890-4.00001-0

Daemen, J., & Rijmen, V. (2002). The Design of Rijndael: AES - The Advanced Encryption Standard. Springer. https://doi.org/10.1007/978-3-662-04722-4

Carlet, C., & Preneel, B. (2008). Boolean functions in cryptology and information security. In Handbook of Boolean Functions. CRC Press.

Rothaus, O. S. (1976). On "Bent" Functions. Journal of Combinatorial Theory, Series A, 20(3), 300–305. https://doi.org/10.1016/0097-3165(76)90031-0

Nyberg, K. (1993). Differentially uniform mappings for cryptography. In Advances in Cryptology — EUROCRYPT ‘93 (pp. 55–64). Lecture Notes in Computer Science, vol 765. Springer. https://doi.org/10.1007/3-540-48285-7_6

Zhang, X., & Zheng, Y. (2000). GAC - the Criterion for Global Avalanche Characteristics of Cryptographic Functions. Journal of Universal Computer Science, 6(1), 307–328. https://doi.org/10.3217/jucs-006-01-0307

Millan, W., Clark, J., & Dawson, E. (1998). Heuristic Design of Cryptographically Strong Balanced Boolean Functions. In Advances in Cryptology — EUROCRYPT ‘98 (pp. 489–499). Lecture Notes in Computer Science, vol 1403. Springer. https://doi.org/10.1007/BFb0054143

Zhang, X., Liu, Z., & Wu, X. (2013). A Study of the Cryptographic Properties of Balanced Boolean Functions. Cryptography and Communications, 5(3), 171–190. https://doi.org/10.1007/s12095-012-0064-6

Preneel, B., Govaerts, R., & Vandewalle, J. (1990). Boolean Functions Satisfying Higher Order Strict Avalanche Criterion. In Advances in Cryptology — EUROCRYPT ‘90 (pp. 49–60). Lecture Notes in Computer Science, vol 473. Springer. https://doi.org/10.1007/3-540-46877-3_5

Ding, J., & Liu, J. (2009). On the Algebraic Degree of Boolean Functions and its Applications to Cryptography. Information and Computation, 207(5), 505–513. https://doi.org/10.1016/j.ic.2008.09.012

Canteaut, A., & Charpin, P. (2001). The nonlinearity of Boolean functions and their algebraic immunity. Designs, Codes and Cryptography, 24(3), 257–269. https://doi.org/10.1023/A:1010685126671

Kavut, M., & Yılmaz, İ. (2013). Boolean Functions and their Cryptographic Properties. In Proceedings of the 2013 International Conference on Security and Cryptography (pp. 207–211). IARIA. https://www.thinkmind.org/index.php?view=article&articleid=securrity_2013_4_10_30026

Kasami, T. (1985). The Properties of 2k-1 Functions on GF(2n). In Advances in Cryptology — CRYPTO ‘84 (pp. 211–217). Lecture Notes in Computer Science, vol 196. Springer. https://doi.org/10.1007/3-540-39568-7_15

Oruç, E., & Yılmaz, İ. (2009). On the correlation immunity of Boolean functions. Journal of the Franklin Institute, 346(3), 256–265. https://doi.org/10.1016/j.jfranklin.2008.10.005

Liu, Z., & Zhang, X. (2011). A survey on the design of cryptographically strong Boolean functions. Cryptography and Communications, 3(1), 1–19. https://doi.org/10.1007/s12095-011-0033-0

Carlet, C. (2003). Boolean Functions and the Design of Cryptographic Systems. In Proceedings of the International Conference on Information Security (pp. 104–113). Springer. https://doi.org/10.1007/978-3-540-36025-5_10

Tavares, S. E. (1996). On the construction of S-boxes with high nonlinearity. Advances in Cryptology — CRYPTO ‘96 (pp. 205–216). Lecture Notes in Computer Science, vol 1109. Springer. https://doi.org/10.1007/3-540-68697-5_16

Yang, Y. (2015). Correlation immunity of Boolean functions: A survey. Cryptography and Communications, 7(2), 141–155. https://doi.org/10.1007/s12095-014-0135-y

Abduraximov, B. F. S-blokni ifodalovchi algebraik tenglamalar sistemasini qurish algoritmi / B. F. Abduraximov, A. B. Sattarov // Проблемы вычислительной и прикладной математики. – 2018. – No 2(14). – P. 132-145. – EDN KYSDAD.

W. Zhang, E. Pasalic, Highly nonlinear balanced S-boxes with good differential properties, IEEE Trans. Inf. Theory 60 (12) (2014) 7970–7979.

Yong Wang, Zhiqiang Zhang, Leo Yu Zhang, Jun Feng, Jerry Gao, Peng Lei, A genetic algorithm for constructing bijective substitution boxes with high nonlinearity, Information Sciences, Volume 523, 2020, Pages 152-166,ISSN 0020- 0255,https://doi.org/10.1016/j.ins.2020.03.025.

H. Zahid et al., "Efficient Dynamic S-Box Generation Using Linear Trigonometric Transformation for Security Applications," in IEEE Access, vol. 9, pp. 98460-98475, 2021, doi: 10.1109/ACCESS.2021.3095618.

Downloads

Published

2025-12-01
Loading...